首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Comparison of standardized methods for suspended solid concentration measurements in river samples
  • 本地全文:下载
  • 作者:Guillaume Dramais ; Benoît Camenen ; Jérôme Le Coz
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:40
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184004018
  • 出版社:EDP Sciences
  • 摘要:SSC (Suspended Solid Concentration) measurements in rivers are a complex scientific issue. Many questions arise on the spatial and temporal distribution of particles throughout a cross-section, on the properties of particles and grain-size, and also on the sediment transport capacity of streams and rivers. In this study, we focused on the SSC and grain size distribution measured from river samples, automatically or manually acquired. Many agencies suggested slightly different methods for measuring SSC: The European standard NF EN 872, which related to the US EPA 160.2 requires sub-sampling using shake-and-pour aliquot selection. The APHA 2540D requires sub-sampling by pipetting at middepth in the original sample shaken with a magnetic stirrer. These methods lead to significant uncertainty when particles larger than 63 µm are present in the samples. The ASTM D3977 analysis method, endorsed by the USGS is more accurate to capture and quantify particles larger than 63 µm. In this study we confirm the sub-sampling problem in a large concentration range using a set of samples from an alpine river.
  • 其他摘要:SSC (Suspended Solid Concentration) measurements in rivers are a complex scientific issue. Many questions arise on the spatial and temporal distribution of particles throughout a cross-section, on the properties of particles and grain-size, and also on the sediment transport capacity of streams and rivers. In this study, we focused on the SSC and grain size distribution measured from river samples, automatically or manually acquired. Many agencies suggested slightly different methods for measuring SSC: The European standard NF EN 872, which related to the US EPA 160.2 requires sub-sampling using shake-and-pour aliquot selection. The APHA 2540D requires sub-sampling by pipetting at middepth in the original sample shaken with a magnetic stirrer. These methods lead to significant uncertainty when particles larger than 63 μm are present in the samples. The ASTM D3977 analysis method, endorsed by the USGS is more accurate to capture and quantify particles larger than 63 μm. In this study we confirm the sub-sampling problem in a large concentration range using a set of samples from an alpine river.
国家哲学社会科学文献中心版权所有