首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:The effects of waste glass cullets and nanosilica on the long-term properties of cement mortars
  • 本地全文:下载
  • 作者:Katarzyna Skoczylas ; Teresa Rucińska
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:49
  • 页码:1-9
  • DOI:10.1051/e3sconf/20184900102
  • 出版社:EDP Sciences
  • 摘要:This study presents experimental results on the effects of nanosilica and waste glass cullets on the long-term mechanical properties and durability of cement mortars. Three groups of cement mortars were prepared, where natural aggregate was replaced in 0% (R), 50% (RWG) and 100% (WG) with waste glass cullets by volume. Each group was modified with the nanosilica admixture by 0%, 1% and 3% by the weight of cement. Furthermore, superplasticizer was incorporated in order to improve the workability of mortars. Subsequently to the preparation and curing of specimens, mechanical properties after 7, 28 and 365 days, freeze-thaw resistance, adhesive strength, abrasion resistance, and drying shrinkage (in two types of curing conditions) were evaluated. The results confirmed the applicability of waste glass in the construction industry as well as the beneficial effect of nanosilica on the mechanical properties of mortars.
  • 其他摘要:This study presents experimental results on the effects of nanosilica and waste glass cullets on the long-term mechanical properties and durability of cement mortars. Three groups of cement mortars were prepared, where natural aggregate was replaced in 0% (R), 50% (RWG) and 100% (WG) with waste glass cullets by volume. Each group was modified with the nanosilica admixture by 0%, 1% and 3% by the weight of cement. Furthermore, superplasticizer was incorporated in order to improve the workability of mortars. Subsequently to the preparation and curing of specimens, mechanical properties after 7, 28 and 365 days, freeze-thaw resistance, adhesive strength, abrasion resistance, and drying shrinkage (in two types of curing conditions) were evaluated. The results confirmed the applicability of waste glass in the construction industry as well as the beneficial effect of nanosilica on the mechanical properties of mortars.
国家哲学社会科学文献中心版权所有