首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Discussion on “Double sparsity kernel learning with automatic variable selection and data extraction”
  • 本地全文:下载
  • 作者:Liu, Meimei ; Cheng, Guang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2018
  • 卷号:11
  • 期号:3
  • 页码:423-424
  • DOI:10.4310/SII.2018.v11.n3.a3
  • 语种:English
  • 出版社:International Press
  • 摘要:DOSK proposed in [2] aims to perform both variable selection and data extraction at the same time under the “finite sparsity” assumption. In this short note, we propose two alternative approaches based on random projection and importance sampling without such an assumption. Furthermore, we compare these two methods with DOSK empirically in terms of statistical accuracy and computing efficiency.
  • 关键词:data extraction; importance sampling; kernel regression; reproducing kernel Hilbert space; random projection; variable selection
国家哲学社会科学文献中心版权所有