首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Geology, mineralization, mineral chemistry, and chemistry and source of ore-fluid of Irankuh Pb-Zn mining district, south of Isfahan
  • 本地全文:下载
  • 作者:Mohammad Hassan Karimpour ; Azadeh Malekzadeh Shafaroudi ; Abbas Esmaeili Sevieri
  • 期刊名称:Journal of Economic Geology
  • 印刷版ISSN:2008-7306
  • 出版年度:2017
  • 卷号:9
  • 期号:2
  • 页码:267-294
  • 语种:
  • 出版社:Ferdowsi University of Mashhad
  • 摘要:Introduction The Irankuh mining district area located at the southern part of the Malayer-Isfahan metallogenic belt, south of Isfahan, consists of several Zn-Pb deposits and occurrences such as Tappehsorkh, Rowmarmar 5, Kolahdarvazeh, Blind ore, and Gushfil deposits as well as Rowmarmar 1-4 and Gushfil 1 prospects. Based on geology, alteration, form and texture of mineralization, and paragenesis assemblages, Pb-Zn mineralization is Mississippi-type deposit (Rastad, 1981; Ghazban et al., 1994; Ghasemi, 1995; Reichert, 2007; Timoori-Asl (2010); Ayati et al., 2013; Hosseini-Dinani et al., 2015). Geology of the area consists of Jurassic siltstone and shale and different types of Cretaceous dolostone and limestone. The aim of this research is new geological studies such as revision of old geologic map, study of different types of textures and mineral assemblages within carbonate and clastic host rocks, and chemistry of galena, sphalerite, and dolomite. Finally, we combined these results with isotopic and fluid inclusion data and discussed on ore-fluid conditions. Materials and Methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, 200 thin and 70 polished thin sections were prepared. Some of the samples were selected for microprobe analysis and galena and sphalerite minerals were analyzed by using JEOL- JAX-8230 analyzer at Colorado University, USA. The chemistry of dolomite and fluid inclusion data are used after Boveiri Konari and Rastad (2016) and stable isotope is used after Ghazban et al. (1994). Discussion The Irankuh mineralization is hosted by carbonate rocks (dolostone and limestone) and minor clastic rocks as epigenetic. Mineralization has occurred as breccia, veinlet, open space filling, spoted, dessiminated, and replacement (carbonate hosted rock). The mineral assemblages are Fe-rich sphalerite, galena, minor pyrite, Fe- and Mn-rich dolomite, bituminous, ankrite, calcite ± quartz ± barite within carbonate host rocks, whereas Fe-rich sphalerite, galena, pyrite, minor chalcopyrite, low Fe-dolomite, quartz, bituminous, ± barite ± calcite are important primary minerals at clastic host rocks. There is positive correlation between Ag and Sb values within galena mineral. Sb/Bi ratio in galena is up to 20, which is an indicator of low temperature deposits (Malakhov, 1968). The Irankuh homogenization temperature (170 to 260 ºC) is higher than that of US Mississippi-type deposits (80 to 120 ºC). Based on comparison of Th and Fe and Cd contents in sphalerite from Irankuh and US deposits (Viets et al., 1992), homogenization temperature of deposit has a positive relation with Fe values and a negative relation with Cd contents in sphalerite. Fe content in Irankuh sphalerite has reached up to 5% and Cd value is lower than 2000 ppm. In addition, carbonate hosted rock hydrothermal dolomites that are Fe-rich and ankrite have formed at some places. The evidence shows that Irankuh ore-fluid is Fe-rich. However, clastic hosted rock hydrothermal dolomites are low-Fe due to reaction of Fe and S resulting in pyrite formation. Based on O isotope (16–19 ‰) value from hydrothermal dolomites (Ghazban et al., 1994), ore-fluid has been derived from continental crust. Results Fe-rich sphalerite and dolomite and ankrite are the most important characteristics of Irankuh mining district. Temperature and Fe-rich nature of ore-fluid and mineralogy signatures of Irankuh area can be used for exploration of this type of mineralization in Iran and the world. The Irankuh mining district is MVT type mineralization. Acknowledgements The Research Division of the Ferdowsi University of Mashhad, Iran, supported this study (Project No. 40221.3). Thanks to Bama Co. (especially Mr. Eslami) for the collaborations. References Ayati, F., Dehghani, H., Mokhtari, A.R. and Mojtahedzadeh, H., 2013. Geochemistry and mineralogy studies of Gushfil Pb-Zn deposit, Irankuh, Isfahan. Analytical and Numerical Methods in Mining Engineering, 6: 83-91 (in Persian). Boveiri Konari, M. and Rastad, E., 2016. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh Mining District, Iran. Geological Journal, DOI: 10.1002/gj.2875 Ghasemi, A., 1995. Facies analysis and geochemistry of Kolah-Darvazaeh, Goud-Zendan, and Khaneh-Gorgi Pb-Zn deposits from south of Irankuh. M.Sc. thesis, Tarbiat Modares University, Tehran, Iran, 158 pp. (in Persian) Ghazban, F., McNutt, R.H. and Schwarcz, H. P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Economic Geology, 89: 1262-1278. Hosseini-Dinani, H., Aftabi, A., Esmaeili, A. and Rabbani, M., 2015. Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration, 156: 114-130. Malakhov, A.A., 1968. Bismuth and antimony in galena, indicators of conditions of ore deposition. Geokhimiya, 11: 1283-1296. Rastad, E., 1981. Geological, mineralogical and ore facies investigations on the Lower Cretaceous stratabound Zn – Pb – Ba – Cu deposits of the Irankuh mountain range, Isfahan, west central Iran. Ph.D. thesis, Heidelberg University, Heidelberg, Germany, 334 pp. Reichert, J., 2007. A metallogenetic model for carbonate-hosted non-sulphide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran. Ph.D. thesis, Martin Luther University Halle Wittenberg, Halle, Germany, 152 pp. Timoori-Asl, F., 2010. Sedimentology and petrology of Jurassic deposits and Basinal brines studies in formation of Irankuh deposit. M.Sc. thesis, Isfahan University, Isfahan, Iran, 120 pp. (in Persian) Viets, J.G., Hopkins, R.T. and Miller, B.M., 1992. Variation in minor and trace metals in sphalerite from Mississippi Valley-type deposits of the Ozark Region: genetic implications. Economic Geology, 87:1897–1905.
国家哲学社会科学文献中心版权所有