首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The Method of Short Term Load Forecasting for Micro Grid Using Limit Learning
  • 本地全文:下载
  • 作者:Peng Ji ; Deren Zhao ; Fei Xia
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2018
  • 卷号:170
  • 期号:4
  • 页码:042153
  • DOI:10.1088/1755-1315/170/4/042153
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:Considering the cost constraint and the uncertainty of power consumption, a short-term load forecasting method for microgrid based on kernel function extreme learning machine is proposed. The use of kernel extreme learning machine and heuristic genetic algorithm and time of training samples, the offline optimization of the parameters of prediction model and online load forecasting including periodic update of model parameters; through to ensure the timeliness of algorithm of optimal parameters, while reducing the computational complexity of online prediction system and historical data storage. Through short-term load forecasting for different capacity and type of user side microgrids, the accuracy of prediction results, the effect of parameter cycle update, the impact of prediction results on economic operation and the computational efficiency of prediction methods are analysed.
国家哲学社会科学文献中心版权所有