首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Taxonomy : Mobile Malware Threats and Detection Techniques
  • 本地全文:下载
  • 作者:Lovi Dua ; Divya Bansal
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2014
  • 卷号:4
  • 期号:5
  • 页码:213-221
  • DOI:10.5121/csit.2014.4522
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Since last-decade, smart-phones have gained widespread usage. Mobile devices store personaldetails such as contacts and text messages. Due to this extensive growth, smart-phones areattracted towards cyber-criminals. In this research work, we have done a systematic review ofthe terms related to malware detection algorithms and have also summarized behavioraldescription of some known mobile malwares in tabular form. After careful solicitation of all thepossible methods and algorithms for detection of mobile-based malwares, we give somerecommendations for designing future malware detection algorithm by consideringcomputational complexity and detection ration of mobile malwares.
  • 关键词:Smart-phones; Malware; Attacks; Static analysis; Dynamic analysis
国家哲学社会科学文献中心版权所有