首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Development of a Radial Basis Function Network to Estimate the Head Generated by Electrical Submersible Pumps on Gaseous Petroleum Fluids
  • 本地全文:下载
  • 作者:Morteza Mohammadzaher ; Mojataba Ghodsi ; Abdullah AlQallaf
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2017
  • 卷号:7
  • 期号:16
  • 页码:81-90
  • DOI:10.5121/csit.2017.71608
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper proposes radial basis function network (RBFN) models to estimate the head ofgaseous petroleum fluids (GPFs) in electrical submersible pumps (ESPs) as an alternative towidely used empirical models. Both exact and efficient RBFN modelling approaches wereemployed. RBFN modelling essentially tend to minimise the modelling error, the discrepancy ofestimated and real outputs within the modelling data. This may lead to overfitting and lack ofmodel generality for operating conditions not reflected in modelling data. This critical matterwas addressed in RBFN design process, and highly accurate RBFNs were developed and crossvalidated.
  • 关键词:Electrical Submersible Pump(ESP); Radial Basis Function Network (RBFN); Model; Petroleum;Gaseous; Head Estimation
国家哲学社会科学文献中心版权所有