首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On monotone circuits with local oracles and clique lower bounds
  • 本地全文:下载
  • 作者:Jan Krajíček ; Igor C. Oliveira
  • 期刊名称:Chicago Journal of Theoretical Computer Science
  • 印刷版ISSN:1073-0486
  • 出版年度:2018
  • 卷号:2018
  • 出版社:MIT Press ; University of Chicago, Department of Computer Science
  • 摘要:We investigate monotone circuits with local oracles [Krajíček 2016] i.e., circuits containing additional inputs $y_i = y_i(\vec{x})$ that can perform unstructured computations on the input string $\vec{x}$. Let $\mu \in [0,1]$ be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions $y_i(\vec{x})$, and $U_{n,k}, V_{n,k} \subseteq \{0,1\}^m$ be the set of $k$-cliques and the set of complete $(k-1)$-partite graphs, respectively (similarly to [Razborov, 1985]).} Our results can be informally stated as follows.
    • (i) For an appropriate extension of depth-$2$ monotone circuits with local oracles, we show that the size of the smallest circuits separating $U_{n,3}$ (triangles) and $V_{n,3}$ (complete bipartite graphs) undergoes two phase transitions according to $\mu$.
    • (ii) For $5 \leq k(n) \leq n^{1/4}$, arbitrary depth, and $\mu \leq 1/50$, we prove that the monotone circuit size complexity of separating the sets $U_{n,k}$ and $V_{n,k}$ is $n^{\Theta(\sqrt{k})}$, under a certain restrictive assumption on the local oracle gates.
    The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of $k$-clique obtained in [Alon and Boppana, 1987].
国家哲学社会科学文献中心版权所有