摘要:Background Humans are exposed to low-dose bisphenol A (BPA) through plastic consumer products and dental sealants containing BPA. Although a number of studies have investigated the mammary gland effects after high-dose BPA exposure, the study findings differ. Furthermore, there has been a lack of mechanistic studies. Objective The objective of this study was to investigate the effect and the mechanism of low-dose BPA in mammary gland cells. Methods We evaluated DNA damage following BPA exposure using the comet assay and immunofluorescence staining, and used cell counting and three-dimensional cultures to evaluate effects on proliferation. We examined the expressions of markers of DNA damage and cell-cycle regulators by immunoblotting and performed siRNA-mediated gene silencing to determine the role of c-Myc in regulating BPA’s effects . Results Low-dose BPA significantly promoted DNA damage, up-regulated c-Myc and other cell-cycle regulatory proteins, and induced proliferation in parallel in estrogen receptor-α (ERα)-negative mammary cells. Silencing c-Myc diminished these BPA-induced cellular events, suggesting that c-Myc is essential for regulating effects of BPA on DNA damage and proliferation in mammary cells. Conclusions Low-dose BPA exerted c-Myc–dependent genotoxic and mitogenic effects on ERα-negative mammary cells. These findings provide significant evidence of adverse effects of low-dose BPA on mammary cells. Citation Pfeifer D, Chung YM, Hu MC. 2015. Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: the role of c-Myc. Environ Health Perspect 123:1271–1279; http://dx.doi.org/10.1289/ehp.1409199