摘要:A model aquatic ecosystem is devised for studying relatively volatile organic compounds and simulating direct discharge of chemical wastes into aquatic ecosystems. Six simple benzene derivatives (aniline, anisole, benzoic acid, chlorobenzene, nitrobenzene, and phthalic anhydride) and other important specialty chemicals: hexachlorobenzene, pentachlorophenol, 2,6-diethylaniline, and 3,5,6-trichloro-2-pyridinol were also chosen for study of environmental behavior and fate in the model aquatic ecosystem. Quantitative relationships of the intrinsic molecular properties of the environmental micropollutants with biological responses are established, e.g., water solubility, partition coefficient, pi constant, sigma constant, ecological magnification, biodegradability index, and comparative detoxication mechanisms, respectively. Water solubility, pi constant, and sigma constant are the most significant factors and control the biological responses of the food chain members. Water solubility and pi constant control the degree of bioaccumulation, and sigma constant limits the metabolism of the xenobiotics via microsomal detoxication enzymes. These highly significant correlations should be useful for predicting environmental fate of organic chemicals. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284