首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York, region.
  • 作者:R C Gwynn ; R T Burnett ; G D Thurston
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2000
  • 卷号:108
  • 期号:2
  • 页码:125-133
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:A component of particulate matter (PM) air pollution that may provide one biologically plausible pathway for the observed PM air pollution-health effect associations is aerosol acidity (H(+)). An increasing number of observational studies have demonstrated associations between H(+) and increased adverse health effects in the United States and abroad. Although studies have shown significant H(+) associations with increased morbidity in the United States, similar associations have yet to be shown with daily mortality. We considered a 2.5-year record of daily H(+) and sulfate measurements (May 1988-October 1990) collected in the Buffalo, New York, region in a time-series analysis of respiratory, circulatory, and total daily mortality and hospital admissions. Other copollutants considered included particulate matter [less than/equal to] 10 microm in aerodynamic diameter, coefficient of haze, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Various modeling techniques were applied to control for confounding of effect estimates due to seasonality, weather, and day-of-week effects. We found multiple significant pollutant-health effect associations--most strongly between SO(4)(2-) and respiratory hospital admissions (as indicated by its t-statistic). Additionally, H(+) and SO(4)(2-) demonstrated the most coherent associations with both respiratory hospital admissions [H(+): relative risk (RR) = 1. 31; 95% confidence interval (CI), 1.14-1.51; and SO(4)(2-): RR = 1. 18, CI, 1.09-1.28] and respiratory mortality (H(+): RR = 1.55, CI, 1. 09-2.20; and SO(4)(2-): RR = 1.24, CI, 1.01-1.52). Thus, acidic sulfate aerosols represent a component of PM air pollution that may contribute to the previously noted adverse effects of PM mass on human health, and the associations demonstrated in this study support the need for further investigations into the potential health effects of acidic aerosols. Full text Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References . 125 126 127 128 129 130 131 132 133
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有