摘要:Exposure of pregnant Long-Evans rats to elemental mercury (Hg0) vapor resulted in a significant accumulation of Hg in tissues of neonates. Because elevated Hg in neonatal tissues may adversely affect growth and development, we were interested in how rapidly Hg was eliminated from neonatal tissues. Pregnant rats were exposed to 1, 2, or 4 mg Hg0 vapor/m3 or air (controls) for 2 hr/day from gestation day 6 (GD6) through GD15. Neonatal brain, liver, and kidney were analyzed for total Hg at various times between birth and postnatal day 90 (PND90). Milk was analyzed for Hg between birth and weaning (PND21). Before weaning, the Hg levels in neonatal tissues were proportional to maternal exposure concentrations and were highest in kidney followed by liver and then brain. There was no elimination of Hg between birth and weaning, indicating that neonates were exposed continuously to elevated levels of Hg during postpartum growth and development. Consumption of milk from exposed dams resulted in a slight increase in kidney Hg concentration during this period. Unexpectedly, neonatal Hg accumulation increased rapidly after weaning. Increased Hg was measured in both control and exposed neonates and was attributed to consumption of NIH-07 diet containing trace levels of Hg. By PND90, tissue Hg levels equilibrated at concentrations similar to those in unexposed adult Long-Evans rats fed the same diet. These data indicate that dietary exposure to trace amounts of Hg can result in a significantly greater accumulation of Hg in neonates than gestational exposure to high concentrations of Hg0 vapor.