首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Cadmium Impairs Albumin Reabsorption by Down-regulating Megalin and ClC5 Channels in Renal Proximal Tubule Cells
  • 作者:Patrizia Gena ; Giuseppe Calamita ; William B. Guggino
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2010
  • 卷号:118
  • 期号:11
  • 页码:1551-1556
  • DOI:10.1289/ehp.0901874
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background Cadmium (Cd) is a potent nephrotoxicant that impairs the reabsorptive and secretory functions of the renal proximal tubule, leading to albuminuria. Objectives To gain insights into the mechanisms of Cd-induced albuminuria, we investigated effects of Cd on the expression of megalin and chloride channel 5 (ClC5), two key players in albumin- receptor–mediated endocytosis. Methods We used quantitative polymerase chain reaction, Western blotting, the albumin endocytosis assay, and confocal microscopy to evaluate effects of Cd on the expression and regulation of megalin and ClC5 in cultured LLC-PK1 cells, a pig proximal tubular cell model. Results Ten micromolar cadmium chloride (CdCl2) caused a significant time- and dose-dependent decrease in both mRNA and protein levels of megalin and ClC5, whereas no changes resulted from exposure to other divalent metals (zinc chloride, manganese chloride, magnesium chloride, and nickel chloride). After inhibiting protein synthesis using cycloheximide (CHX), we found that levels of both megalin and ClC5 were lower in Cd-challenged cells than in cells treated with Cd or CHX only, which is consistent with reduced translation and/or posttranslational down-regulation. Moreover, Cd-induced degradation of megalin and ClC5 was abolished by the lysosomal pathway inhibitor bafilomycin A-1 but not by the proteasome system blocker MG-132, suggesting that the enhanced proteolysis was occurring via lysosomes. Using confocal microscopy, we observed a remarkable reduction of fluoroisothiocyanate (FITC)-labeled albumin uptake after Cd exposure. Conclusions We found that Cd reduced the transcriptional expression of megalin and ClC5 and, at the same time, increased the degradation of megalin and ClC5 proteins via the lysosomal pathway in an in vitro model of renal proximal tubular cells. Overall, these results provide valuable insights into the molecular mechanisms by which Cd impairs luminal protein reabsorption by renal proximal tubules.
  • 关键词:albuminuria; cadmium; ClC5; heavy metals; megalin; nephrotoxicity; renal proximal tubules
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有