首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research
  • 作者:Dennie G.A.J. Hebels ; Panagiotis Georgiadis ; Hector C. Keun
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2013
  • 卷号:121
  • 期号:4
  • 页码:480-487
  • DOI:10.1289/ehp.1205657
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography–time-of-flight mass spectrometry)], and wide-target proteomic profiles. Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at –80oC or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks. Results: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13–17 years. Conclusions: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study.
  • 关键词:biomarkers; epigenomics; metabolomics; metabonomics; molecular epidemiology; proteomics; transcriptomics
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有