首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women
  • 作者:Jessica LaRocca ; Alexandra M. Binder ; Thomas F. McElrath
  • 期刊名称:Environmental Health Perspectives
  • 印刷版ISSN:0091-6765
  • 电子版ISSN:1552-9924
  • 出版年度:2016
  • 卷号:124
  • 期号:3
  • 页码:380-387
  • DOI:10.1289/ehp.1408409
  • 语种:English
  • 出版社:OCR Subscription Services Inc
  • 摘要:Background There is increasing concern that early-life exposure to endocrine-disrupting chemicals (EDCs) can influence the risk of disease development. Phthalates and phenols are two classes of suspected EDCs that are used in a variety of everyday consumer products, including plastics, epoxy resins, and cosmetics. In utero exposure to EDCs may affect disease propensity through epigenetic mechanisms. Objective The objective of this study was to determine whether prenatal exposure to multiple EDCs is associated with changes in miRNA expression of human placenta, and whether miRNA alterations are associated with birth outcomes. Methods Our study was restricted to a total of 179 women co-enrolled in the Harvard Epigenetic Birth Cohort and the Predictors of Preeclampsia Study. We analyzed associations between first-trimester urine concentrations of 8 phenols and 11 phthalate metabolites and expression of 29 candidate miRNAs in placenta by qRT-PCR. Results For three miRNAs—miR-142-3p, miR15a-5p, and miR-185—we detected associations between Σphthalates or Σphenols on expression levels ( p < 0.05). By assessing gene ontology enrichment, we determined the potential mRNA targets of these microRNAs predicted in silico were associated with several biological pathways, including the regulation of protein serine/threonine kinase activity. Four gene ontology biological processes were enriched among genes significantly correlated with the expression of miRNAs associated with EDC burden. Conclusions Overall, these results suggest that prenatal phenol and phthalate exposure is associated with altered miRNA expression in placenta, suggesting a potential mechanism of EDC toxicity in humans. Citation LaRocca J, Binder AM, McElrath TF, Michels KB. 2016. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect 124:380–387; http://dx.doi.org/10.1289/ehp.1408409
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有