首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Applying the Support Vector Machine Method to Matching IRAS and SDSS Catalogues
  • 本地全文:下载
  • 作者:Chen Cao
  • 期刊名称:Data Science Journal
  • 电子版ISSN:1683-1470
  • 出版年度:2015
  • 卷号:6
  • DOI:10.2481/dsj.6.S756
  • 语种:English
  • 出版社:Ubiquity Press
  • 摘要:This paper presents results of applying a machine learning technique, the Support Vector Machine (SVM), to the astronomical problem of matching the Infra-Red Astronomical Satellite (IRAS) and Sloan Digital Sky Survey (SDSS) object catalogues. In this study, the IRAS catalogue has much larger positional uncertainties than those of the SDSS. A model was constructed by applying the supervised learning algorithm (SVM) to a set of training data. Validation of the model shows a good identification performance (∼ 90% correct), better than that derived from classical cross-matching algorithms, such as the likelihood-ratio method used in previous studies.
  • 关键词:Miscellaneous astronomical data bases; Catalogs; Surveys; Sloan Digital Sky; Infra-red astronomy
国家哲学社会科学文献中心版权所有