首页    期刊浏览 2024年12月15日 星期日
登录注册

文章基本信息

  • 标题:On the estimation of the function and its derivatives in nonparametric regression: A bayesian testimation approach
  • 作者:Athanasia Petsa ; Theofanis Sapatinas
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2011
  • 卷号:73
  • 期号:2
  • 页码:231-244
  • DOI:10.1007/s13171-011-0016-y
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:We consider the problem of estimating the unknown response function and its derivatives in the standard nonparametric regression model. Recently, Abramovich et al. (2010) applied a Bayesian testimation procedure in a wavelet context and proved asymptotical minimaxity of the resulting adaptive level-wise maximum a posteriori wavelet testimator of the unknown response function and its derivatives in the Gaussian white noise model. Using the boundary-modified coiflets of Johnstone and Silverman (2004), we show that dicretization of the data does not affect the order of magnitude of the accuracy of a discrete version of the suggested level-wise maximum a posteriori wavelet testimator, obtaining thus its adaptivity and asymptotical minimaxity in the standard nonparametric regression model that is usually considered in practical applications. Simulated examples are used to illustrate the performance of the developed wavelet testimation procedure and compared with three recently proposed empirical Bayes wavelet estimators and a block thresholding wavelet estimator.
  • 关键词:Adaptive estimation ; Besov spaces ; boundary wavelets ; coiflets ; Gaussian white noise model ; multiple testing ; nonparametric regression model ; thresholding ; wavelet analysis
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有