首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood
  • 作者:Karthik Sriram ; R. V. Ramamoorthi ; Pulak Ghosh
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2016
  • 卷号:78
  • 期号:1
  • 页码:87-104
  • DOI:10.1007/s13171-015-0079-2
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:We consider a pseudo-likelihood for Bayesian estimation of multiple quantiles as a function of covariates. This arises as a simple product of multiple asymmetric Laplace densities (ALD), each corresponding to a particular quantile. The ALD has already been used in the Bayesian estimation of a single quantile. However, the pseudo-joint ALD likelihood is a way to incorporate constraints across quantiles, which cannot be done if each of the quantiles is modeled separately. Interestingly, we find that the normalized version of the likelihood turns out to be misleading. Hence, the pseudo-likelihood emerges as an alternative. In this note, we show that posterior consistency holds for the multiple quantile estimation based on such a likelihood for a nonlinear quantile regression framework and in particular for a linear quantile regression model. We demonstrate the benefits and explore potential challenges with the method through simulations.
  • 关键词:Asymmetric Laplace density ; Bayesian quantile regression ; Pseudo-likelihood
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有