首页    期刊浏览 2025年02月03日 星期一
登录注册

文章基本信息

  • 标题:Unsupervised Sub-tree Alignment for Tree-to-Tree Translation
  • 本地全文:下载
  • 作者:T. Xiao ; J. Zhu
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2013
  • 卷号:48
  • 页码:733-782
  • 出版社:American Association of Artificial
  • 摘要:This article presents a probabilistic sub-tree alignment model and its application to tree-to-tree machine translation. Unlike previous work, we do not resort to surface heuristics or expensive annotated data, but instead derive an unsupervised model to infer the syntactic correspondence between two languages. More importantly, the developed model is syntactically-motivated and does not rely on word alignments. As a by-product, our model outputs a sub-tree alignment matrix encoding a large number of diverse alignments between syntactic structures, from which machine translation systems can efficiently extract translation rules that are often filtered out due to the errors in 1-best alignment. Experimental results show that the proposed approach outperforms three state-of-the-art baseline approaches in both alignment accuracy and grammar quality. When applied to machine translation, our approach yields a +1.0 BLEU improvement and a -0.9 TER reduction on the NIST machine translation evaluation corpora. With tree binarization and fuzzy decoding, it even outperforms a state-of-the-art hierarchical phrase-based system.
国家哲学社会科学文献中心版权所有