首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Leveraging Online User Feedback to Improve Statistical Machine Translation
  • 本地全文:下载
  • 作者:Lluís Formiga ; Alberto Barrón-Cedeño ; Lluís Màrquez
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2015
  • 卷号:54
  • 页码:159-192
  • 出版社:American Association of Artificial
  • 摘要:In this article we present a three-step methodology for dynamically improving a statistical machine translation (SMT) system by incorporating human feedback in the form of free edits on the system translations. We target at feedback provided by casual users, which is typically error-prone. Thus, we first propose a filtering step to automatically identify the better user-edited translations and discard the useless ones. A second step produces a pivot-based alignment between source and user-edited sentences, focusing on the errors made by the system. Finally, a third step produces a new translation model and combines it linearly with the one from the original system. We perform a thorough evaluation on a real-world dataset collected from the Reverso.net translation service and show that every step in our methodology contributes significantly to improve a general purpose SMT system. Interestingly, the quality improvement is not only due to the increase of lexical coverage, but to a better lexical selection, reordering, and morphology. Finally, we show the robustness of the methodology by applying it to a different scenario, in which the new examples come from an automatically Web-crawled parallel corpus. Using exactly the same architecture and models provides again a significant improvement of the translation quality of a general purpose baseline SMT system.
国家哲学社会科学文献中心版权所有