首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Distributed Representation-Based Framework for Cross-Lingual Transfer Parsing
  • 本地全文:下载
  • 作者:Jiang Guo ; Wanxiang Che ; David Yarowsky
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2016
  • 卷号:55
  • 页码:995-1023
  • 出版社:American Association of Artificial
  • 摘要:This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g., English). Existing model transfer approaches typically don't include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using distributed feature representations and their composition. We provide two algorithms for inducing cross-lingual distributed representations of words, which map vocabularies from two different languages into a common vector space. Consequently, both lexical features and non-lexical features can be used in our model for cross-lingual transfer. Furthermore, our framework is flexible enough to incorporate additional useful features such as cross-lingual word clusters. Our combined contributions achieve an average relative error reduction of 10.9% in labeled attachment score as compared with the delexicalized parser, trained on English universal treebank and transferred to three other languages. It also significantly outperforms state-of-the-art delexicalized models augmented with projected cluster features on identical data. Finally, we demonstrate that our models can be further boosted with minimal supervision (e.g., 100 annotated sentences) from target languages, which is of great significance for practical usage.
国家哲学社会科学文献中心版权所有