首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:The Computational Complexity of Structure-Based Causality
  • 本地全文:下载
  • 作者:Gadi Aleksandrowicz ; Hana Chockler ; Joseph Y. Halpern
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2017
  • 卷号:58
  • 页码:431-451
  • 出版社:American Association of Artificial
  • 摘要:Halpern and Pearl introduced a definition of actual causality; Eiter and Lukasiewicz showed that computing whether X = x is a cause of Y = y is NP-complete in binary models (where all variables can take on only two values) and Σ^P_2 -complete in general models. In the final version of their paper, Halpern and Pearl slightly modified the definition of actual cause, in order to deal with problems pointed out by Hopkins and Pearl. As we show, this modification has a nontrivial impact on the complexity of computing whether {X} = {x} is a cause of Y = y. To characterize the complexity, a new family D_k^P , k = 1, 2, 3, . . ., of complexity classes is introduced, which generalises the class DP introduced by Papadimitriou and Yannakakis (DP is just D_1^P). We show that the complexity of computing causality under the updated definition is D_2^P -complete. Chockler and Halpern extended the definition of causality by introducing notions of responsibility and blame, and characterized the complexity of determining the degree of responsibility and blame using the original definition of causality. Here, we completely characterize the complexity using the updated definition of causality. In contrast to the results on causality, we show that moving to the updated definition does not result in a difference in the complexity of computing responsibility and blame.
国家哲学社会科学文献中心版权所有