首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Learning Discrete Bayesian Networks from Continuous Data
  • 本地全文:下载
  • 作者:Yi-Chun Chen ; Tim A. Wheeler ; Mykel J. Kochenderfer
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2017
  • 卷号:59
  • 页码:103-132
  • 出版社:American Association of Artificial
  • 摘要:Learning Bayesian networks from raw data can help provide insights into the relationships between variables. While real data often contains a mixture of discrete and continuous-valued variables, many Bayesian network structure learning algorithms assume all random variables are discrete. Thus, continuous variables are often discretized when learning a Bayesian network. However, the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled Bayesian discretization method for continuous variables in Bayesian networks with quadratic complexity instead of the cubic complexity of other standard techniques. Empirical demonstrations show that the proposed method is superior to the established minimum description length algorithm. In addition, this paper shows how to incorporate existing methods into the structure learning process to discretize all continuous variables and simultaneously learn Bayesian network structures.
国家哲学社会科学文献中心版权所有