首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:From Feature To Paradigm: Deep Learning In Machine Translation
  • 本地全文:下载
  • 作者:Marta R. Costa-jussà
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2018
  • 卷号:61
  • 页码:947-974
  • 出版社:American Association of Artificial
  • 摘要:In the last years, deep learning algorithms have highly revolutionized several areas including speech, image and natural language processing. The specific field of Machine Translation (MT) has not remained invariant. Integration of deep learning in MT varies from re-modeling existing features into standard statistical systems to the development of a new architecture. Among the different neural networks, research works use feed-forward neural networks, recurrent neural networks and the encoder-decoder schema. These architectures are able to tackle challenges as having low-resources or morphology variations. This manuscript focuses on describing how these neural networks have been integrated to enhance different aspects and models from statistical MT, including language modeling, word alignment, translation, reordering, and rescoring. Then, we report the new neural MT approach together with a description of the foundational related works and recent approaches on using subword, characters and training with multilingual languages, among others. Finally, we include an analysis of the corresponding challenges and future work in using deep learning in MT.
国家哲学社会科学文献中心版权所有