首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models
  • 本地全文:下载
  • 作者:Gunay, Samet ; Khaki, Audil Rashid
  • 期刊名称:Journal of Risk and Financial Management
  • 印刷版ISSN:1911-8074
  • 出版年度:2018
  • 卷号:11
  • 期号:2
  • 页码:1-19
  • 出版社:MDPI, Open Access Journal
  • 摘要:Precise modeling and forecasting of the volatility of energy futures is vital to structuring trading strategies in spot markets for risk managers. Capturing conditional distribution, fat tails and price spikes properly is crucial to the correct measurement of risk. This paper is an attempt to model volatility of energy futures under different distributions. In empirical analysis, we estimate the volatility of Natural Gas Futures, Brent Oil Futures and Heating Oil Futures through GARCH and APARCH models under gev, gat and alpha-stable distributions. We also applied various VaR analyses, Gaussian, Historical and Modified (Cornish-Fisher) VaR, for each variable. Results suggest that the APARCH model largely outperforms the GARCH model, and gat distribution performs better in modeling fat tails in returns. Our results also indicate that the correct volatility level, in gat distribution, is higher than those suggested under normal distribution with rates of 56%, 45% and 67% for Natural Gas Futures, Brent Oil Futures and Heating Oil Futures, respectively. Implemented VaR analyses also support this conclusion. Additionally, VaR test results demonstrate that energy futures display riskier behavior than S&P 500 returns. Our findings suggest that for optimum risk management and trading strategies, risk managers should consider alternative distributions in their models. According to our results, prices in energy markets are wilder than the perception of normal distribution. In this regard, regulators and policy makers should enhance transparency and competitiveness in the energy markets to protect consumers.
  • 关键词:volatility modeling; APARCH; gev; gat; alpha-stable distribution
国家哲学社会科学文献中心版权所有