出版社:National Nutrition and Food Technology Research Institute
其他摘要:Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens. Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora , Aspergillus niger and Rhizopus stolonifer . Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L -1 , against Erwinia carotovora , Aspergillus niger and Rhizopus stolonifer , respectively). Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed. Conflict of Interest: The authors declare no conflict of interest.