首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES
  • 本地全文:下载
  • 作者:F. Poux ; P. Hallot ; R. Neuville
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-2/W1
  • 页码:119-127
  • 出版社:Copernicus Publications
  • 摘要:Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud . This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.
  • 关键词:Point cloud data structure; classification; feature extraction; segmentation; data mining; machine learning; multi-dimensional indexing; point cloud database
国家哲学社会科学文献中心版权所有