首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:EFFICIENT LIDAR POINT CLOUD DATA MANAGING AND PROCESSING IN A HADOOP-BASED DISTRIBUTED FRAMEWORK
  • 本地全文:下载
  • 作者:C. Wang ; F. Hu ; D. Sha
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-4/W2
  • 页码:121-124
  • 出版社:Copernicus Publications
  • 摘要:Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping,city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop’s storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.
  • 关键词:Lidar Data; Point Cloud; Hadoop; PCL; HDFS; MapReduce; GIS; Distributed Computing
国家哲学社会科学文献中心版权所有