首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:PERFORMANCE ANALYSIS OF CLASSIFICATION METHODS FOR INDOOR LOCALIZATION IN VLC NETWORKS
  • 本地全文:下载
  • 作者:D. Sánchez-Rodríguez ; I. Alonso-González ; J. Sánchez-Medina
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-2/W4
  • 页码:385-391
  • 出版社:Copernicus Publications
  • 摘要:Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
  • 关键词:Indoor Localization; Visible Light Communication; Machine Learning Classifiers; Fingerprinting Techniques
国家哲学社会科学文献中心版权所有