首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Content-Based Image Retrieval using Semantic Assisted Visual Hashing
  • 本地全文:下载
  • 作者:Jagdamb Behari Srivastava ; Dr. Sanjeev Kumar
  • 期刊名称:International Journal of Innovative Research in Science, Engineering and Technology
  • 印刷版ISSN:2347-6710
  • 电子版ISSN:2319-8753
  • 出版年度:2017
  • 卷号:6
  • 期号:6
  • 页码:12067
  • DOI:10.15680/IJIRSET.2017.0606267
  • 出版社:S&S Publications
  • 摘要:This is a new technology to support scalable content-based image retrieval (CBIR]), hashinghas been recently been focused and future directions of research domain. In this paper, we propose a uniqueunsupervised visual hashing approach called semantic-assisted visual hashing (SAVH). Distinguished fromsemi-supervised and supervised visual hashing, its core idea emphatically extracts the rich semantics latentlyembedded in auxiliary texts of images to boost the effectiveness of visual hashing without any explicitsemantic labels. To expand the reach, a unsupervised framework is advanced to learn hash codes bysimultaneously preserving visual similarities of images, integrating the semantic assistance from texts onmodeling high relationships of inter images and defining the correlations between images and shared contents.
  • 关键词:CBIR; Semantic Assistance; Visual Hashing; Text Auxiliaries; Unsupervised Learning.
国家哲学社会科学文献中心版权所有