首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Unified Maximum Likelihood Approach for Optimal Distribution Property Estimation
  • 本地全文:下载
  • 作者:Jayadev Acharya ; Hirakendu Das ; Alon Orlitsky
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2016
  • 卷号:2016
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    The advent of data science has spurred interest in estimating properties of discrete distributions over large alphabets. Fundamental symmetric properties such as support size, support coverage, entropy, and proximity to uniformity, received most attention, with each property estimated using a different technique and often intricate analysis tools.

    Motivated by the principle of maximum likelihood, we prove that for all these properties, a single, simple, plug-in estimator—profile maximum likelihood (PML) —performs as well as the best specialized techniques. We also show that the PML approach is competitive with respect to any symmetric property estimation, raising the possibility that PML may optimally estimate many other symmetric properties.

  • 关键词:Distribution Support Size Estimation ; Entropy Estimation ; label-invariant ; maximum likelihood ; symmetric property
国家哲学社会科学文献中心版权所有