首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:大規模RDFグラフに対するインデックス付きデータ圧縮と高速検索
  • 本地全文:下载
  • 作者:兼岩 憲 ; 藤原 浩司
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2018
  • 卷号:33
  • 期号:2
  • 页码:E-H43_1-10
  • DOI:10.1527/tjsai.E-H43
  • 语种:Japanese
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:

    In the area of the Semantic Web, RDF datastores are required to search for metadata quickly from large scale RDF data, such as Wikidata and DBpedia in the Linked Open Data (LOD). This paper presents compressed index structures and URI dictionaries of RDF data in order to develop a fast in-memory RDF database system (called FROST). Instead of the complete six types of indexes SPO, SOP, PSO, POS, OSP, and OPS in RDF triples, FROST employs the two types of indexes SPO and OPS that enable us to compactly store RDF triples in the memory. Using the compressed index structures, we develop a fast search method in the datastore system FROST that solves SPARQL queries and returns the query answers from RDF graphs. Our experiments show that (i) FROST outperforms the inmemory RDF frameworks Jena and RDF4J with respect to both fast query processing and saved memory, using the datasets and queries of the LUBM (a benchmarking framework for semantic repositories) and BMDB (RDF Store Benchmarks with DBpedia) benchmarks, and (ii) FROST outperforms the on-disk RDF store Virtuoso with respect to fast query processing, using the LUBM benchmark.

  • 关键词:Large RDF Graphs;SPARQL;In-Memory Database;Data Compression;Fast Search
国家哲学社会科学文献中心版权所有