摘要:Background and Objective: Saturated soil culture is a cultivation technology that provides continuous irrigation and maintains a constant water depth. This results in a saturated subsoil layer. Soybeans can perform poorly in these conditions due to the negative effects of saturated soil at the beginning of the growth. However, soybeans eventually acclimatize and improve soybeans growth. This technology is appropriate to prevent pyrite oxidation in tidal swamps and has been proven to increase soybean yields in tidal swamps. The aim of the research was to study the effect of water depth and cultivar on the nutrient uptake, growth and productivity of soybeans. Materials and Methods: The experiment was conducted at Banyuurip, Tanjung Lago, Banyuasin Regency and South Sumatera Province, Indonesia (28 m above sea level, 2°3932" South latitude and 104°43618" East longitude). The experiment was arranged in a split plot design with three replications. The main plot was at a water depth consisting of no water (dry culture), 10 and 20 cm under the soil surface, while the subplot cultivars consisted of Ceneng, Cikuray, Lokal Malang and Tanggamus. Results: The nutrient uptake and growth of soybeans at water depths of 20 and 10 cm were higher than those of dry culture. The interaction of water depth and cultivar affected seed yield per plot. The highest soybean seed yield was obtained at water depths of 20 and 10 cm with the Lokal Malang cultivar (3.99 t ha1), which was not significantly different from the Tanggamus cultivar (4.24 t ha1). Conclusion: The water depth influenced the nodule, root, stalk and leaf dry weight, while the cultivar influenced the nodule and root dry weight.