出版社:Defence Scientific Information & Documentation Centre
摘要:In this study, a planar cavity-backed bow-tie-complementary-ring-slot antenna is proposed, and a new approach for bandwidth enhancement using a shorted-via is introduced. A shorted-via concept overcomes the narrow impedance bandwidth of a conventional substrate integrated waveguide cavity-backed antenna. By adjusting the location of the shorted-via (placed just above the centroid of the radiating slot), the individual bandwidth of the lower and higher order resonances has been tuned below -10 dB criterion, which results in the broadening of the bandwidth. Finally, the antenna is proficient to operate for an impedance bandwidth of 15.71 per cent, ranging from 12.02~14.07 GHz. The proposed antenna shows a gain of better than 4 dBi within the operating band with less than 0.5 dBi variation. Moreover, the antenna preserves good radiation characteristics, which is similar to that of the conventional metallic counterpart. To validate the simulated results, an antenna is fabricated and tested. The simulated results in terms of the reflection coefficient, gain, and radiation patterns are in good agreement with the measured results.
其他摘要:In this study, a planar cavity-backed bow-tie-complementary-ring-slot antenna is proposed, and a new approach for bandwidth enhancement using a shorted-via is introduced. A shorted-via concept overcomes the narrow impedance bandwidth of a conventional substrate integrated waveguide cavity-backed antenna. By adjusting the location of the shorted-via (placed just above the centroid of the radiating slot), the individual bandwidth of the lower and higher order resonances has been tuned below -10 dB criterion, which results in the broadening of the bandwidth. Finally, the antenna is proficient to operate for an impedance bandwidth of 15.71 per cent, ranging from 12.02~14.07 GHz. The proposed antenna shows a gain of better than 4 dBi within the operating band with less than 0.5 dBi variation. Moreover, the antenna preserves good radiation characteristics, which is similar to that of the conventional metallic counterpart. To validate the simulated results, an antenna is fabricated and tested. The simulated results in terms of the reflection coefficient, gain, and radiation patterns are in good agreement with the measured results.