期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:15
页码:E3408-E3415
DOI:10.1073/pnas.1801687115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers and (6-4) pyrimidine–pyrimidone photoproducts in the Saccharomyces cerevisiae genome. We find that these photoproducts are removed from the genome primarily by incisions 13–18 nucleotides 5′ and 6–7 nucleotides 3′ to the UV damage that generate 21- to 27-nt-long excision products. Analyses of the excision repair kinetics both in single genes and at the genome-wide level reveal strong transcription-coupled repair of the transcribed strand at early time points followed by predominantly nontranscribed strand repair at later stages. We have also characterized the excision repair level as a function of the transcription level. The availability of high-resolution and dynamic repair maps should aid in future repair and mutagenesis studies in this model organism.