期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:13
页码:3308-3313
DOI:10.1073/pnas.1719792115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Assessing scholarly influence is critical for understanding the collective system of scholarship and the history of academic inquiry. Influence is multifaceted, and citations reveal only part of it. Citation counts exhibit preferential attachment and follow a rigid “news cycle” that can miss sustained and indirect forms of influence. Building on dynamic topic models that track distributional shifts in discourse over time, we introduce a variant that incorporates features, such as authorship, affiliation, and publication venue, to assess how these contexts interact with content to shape future scholarship. We perform in-depth analyses on collections of physics research (500,000 s; 102 years) and scholarship generally (JSTOR repository: 2 million full-text articles; 130 years). Our measure of document influence helps predict citations and shows how outcomes, such as winning a Nobel Prize or affiliation with a highly ranked institution, boost influence. Analysis of citations alongside discursive influence reveals that citations tend to credit authors who persist in their fields over time and discount credit for works that are influential over many topics or are “ahead of their time.” In this way, our measures provide a way to acknowledge diverse contributions that take longer and travel farther to achieve scholarly appreciation, enabling us to correct citation biases and enhance sensitivity to the full spectrum of scholarly impact.
关键词:scholarly influence ; science of science ; probabilistic modeling