期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:13
页码:3219-3224
DOI:10.1073/pnas.1711314115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Superresolution images reconstructed from single-molecule localizations can reveal cellular structures close to the macromolecular scale and are now being used routinely in many biomedical research applications. However, because of their coordinate-based representation, a widely applicable and unified analysis platform that can extract a quantitative description and biophysical parameters from these images is yet to be established. Here, we propose a conceptual framework for correlation analysis of coordinate-based superresolution images using distance histograms. We demonstrate the application of this concept in multiple scenarios, including image alignment, tracking of diffusing molecules, as well as for quantification of colocalization, showing its superior performance over existing approaches.