首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Synthesis of Thermally Switchable Chromatographic Materials with Immobilized Ti4+ for Enrichment of Phosphopeptides by Reversible Addition Fragmentation Chain Transfer Polymerization
  • 本地全文:下载
  • 作者:Di Wang ; Zhihan Cao ; Xinzhu Pang
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2018
  • 卷号:108
  • 期号:2
  • 页码:022018
  • DOI:10.1088/1755-1315/108/2/022018
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:Reversible phosphorylation of proteins is one of the most crucial types of post-translational modifications (PTMs). And it shows significant work in diversified biological processes. However, the separation technology of phosphorylated peptides is still an analytical challenge in phosphoproteomics, because phosphopeptides are alway in low stoichiometry. Thus, enrichment of phosphopeptides before detection is indispensable. In this study, a novel temperature regulated separation protocol was developed. Silica@p (NIPAAm-co-IPPA)-Ti4+, a new Ti(IV)-IMAC (Immobilized Metal Affinity chromatography) materials was synthesized by reversible addition fragmentation chain transfer polymerization (RAFT). By the unique thermally responsive properties of poly(N-isopropylacrylamide) (PNIPAAm), the captured phosphorylated peptides could be released by changing temperature only without applying any other eluant which could damage the phosphopeptides. We employed isopropanol phosphonic acid (IPPA) as an IMAC ligand for the immobilization of Ti(IV) which could increase the specific adsorption of phosphopeptides. The enrichment and release properties were examined by treatment with pyridoxal 5'-phosphate (PLP) and casein phosphopeptides (CPP). Two phosphorylated compounds above have temperature-stimulated binding to Ti4+. Finally, silica@p (NIPAAm-co-IPPA)-Ti4+ was successfully employed in pretreatment of phosphopeptides in a tryptic digest of a-casein and human serum albumin (HSA). The results indicated a great potential of this new temperature-responsive material in phosphoproteomics study.
国家哲学社会科学文献中心版权所有