摘要:MARS and Spark are two popular parallel computing frameworks and widely used for large-scale data analysis. In this paper, we first propose a performance evaluation model based on support vector machine (SVM), which is used to analyze the performance of parallel computing frameworks. Furthermore, we give representative results of a set of analysis with the proposed analytical performance model and then perform a comparative evaluation of MARS and Spark by using representative workloads and considering factors, such as performance and scalability. The experiments show that our evaluation model has higher accuracy than multifactor line regression (MLR) in predicting execution time, and it also provides a resource consumption requirement. Finally, we study benchmark experiments between MARS and Spark. MARS has better performance than Spark in both throughput and speedup in the executions of logistic regression and Bayesian classification because MARS has a large number of GPU threads that can handle higher parallelism. It also shows that Spark has lower latency than MARS in the execution of the four benchmarks.