首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:New Approach to optimize the time of Association Rules Extraction
  • 本地全文:下载
  • 作者:Thabet Slimani
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2013
  • 卷号:10
  • 期号:5
  • 出版社:IJCSI Press
  • 摘要:The knowledge discovery algorithms have become ineffective at the abundance of data and the need for fast algorithms or optimizing methods is required. To address this limitation, the objective of this work is to adapt a new method for optimizing the time of association rules extractions from large databases. Indeed, given a relational database (one relation) represented as a set of tuples, also called set of attributes, we transform the original database as a binary table (Bitmap table) containing binary numbers. Then, we use this Bitmap table to construct a data structure called Peano Tree stored as a binary file on which we apply a new algorithm called BF-ARM (extension of the well known Apriori algorithm). Since the database is loaded into a binary file, our proposed algorithm will traverse this file, and the processes of association rules extractions will be based on the file stored on disk. The BF-ARM algorithm is implemented and compared with Apriori, Apriori+ and RS-Rules+ algorithms. The evaluation process is based on three benchmarks (Mushroom, Car Evaluation and Adult). Our preliminary experimental results showed that our algorithm produces association rules with a minimum time compared to other algorithms.
  • 关键词:Data Mining; Association Rules; Large Databases; Frequent Itemsets; Peano Trees (Ptree)
国家哲学社会科学文献中心版权所有