期刊名称:International Journal of Computer Science Issues
印刷版ISSN:1694-0784
电子版ISSN:1694-0814
出版年度:2013
卷号:10
期号:1
出版社:IJCSI Press
摘要:In Information Retrieval System (IRS), the Automatic Relevance Feedback (ARF) is a query reformulation technique that modifies the initial one without the user intervention. It is applied mainly through the addition of terms coming from the external resources such as the ontologies and or the results of the current research. In this context we are mainly interested in the local analysis technique for the ARF in ad-hoc IRS on Arabic documents. In this article, we have examined the impact of the variation of the two parameters implied in this technique, that is to say, the number of the documents D and the number of terms T, on an Arabic IRS performance. The experimentation, carried out on an Arabic corpus text, enables us to deduce that there are queries which are not easily improvable with the query reformulation. In addition, the success of the ARF is due mainly to the selection of a sufficient number of documents D and to the extraction of a very reduced set of relevant terms T for retrieval.
关键词:Arabic Information Retrieval; Pseudo Relevance Feedback; Local Analysis; Query Reformulation