首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Research on Spatial Estimation of Soil Property Based on Improved RBF Neural Network
  • 本地全文:下载
  • 作者:Jianbo Xu ; Quanyuan Tan ; Lisheng Song
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2013
  • 卷号:10
  • 期号:1
  • 出版社:IJCSI Press
  • 摘要:To seek optimal network parameters of Radial Basis Function (RBF) Neural Network and improve the accuracy of this method on estimation of soil property space, this study utilizes genetic algorithm to optimize three network parameters of RBF Neural Network including the number of hidden layer nodes, expansion speed and root-mean-square error. Then, based on optimized RBF Neural Network, spatial interpolation is conducted for arable soil property under different sampling scales in the study area. The estimation result is superior to RBF Neural Network method without optimization and geostatistical method in terms of the fitting capacity and interpolation accuracy. Compared with the result of space estimation by RBF Neural Network method without optimization, among the 5 schemes, the forecast errors of RBF Neural Network optimized by genetic algorithm reduce greatly. Mean absolute error (MAE) reduces 0.4868 on the average and root-mean-square error (RMSE) reduces 1.492 on the average. Therefore, RBF Neural Network method optimized by genetic algorithm can gain the information about regional soil property spatial variation more accurately and provides technical support for arable land quality evaluation, accurate farmland management and rational application of fertilizer.
  • 关键词:Genetic algorithm; RBF Neural Network; Spatial forecast; Error analysis
国家哲学社会科学文献中心版权所有