首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Privacy-Preserving Data Mining (PPDM) Method for Horizontally Partitioned Data
  • 本地全文:下载
  • 作者:Mohamed Awad Ouda ; Sameh A. Salem ; Ihab A. Ali
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2012
  • 卷号:9
  • 期号:5
  • 出版社:IJCSI Press
  • 摘要:Due to the increase in sharing sensitive data through networks among businesses, governments and other parties, privacy preserving has become an important issue in data mining and knowledge discovery. Privacy concerns may prevent the parties from directly sharing the data and some types of information about the data. This paper proposes a solution for privately computing data mining classification algorithm for horizontally partitioned data without disclosing any information about the sources or the data. The proposed method (PPDM) combines the advantages of RSA public key cryptosystem and homomorphic encryption scheme. Experimental results show that the PPDM method is robust in terms of privacy, accuracy, and efficiency.
  • 关键词:privacy preserving;data mining; K nearest neighbor; secure multi party computation
国家哲学社会科学文献中心版权所有