首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Farsi/Arabic Document Image Retrieval through Sub -Letter Shape Coding for mixed Farsi/Arabic and English text
  • 作者:Zahra Bahmani ; Reza Azmi
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2011
  • 卷号:8
  • 期号:5
  • 出版社:IJCSI Press
  • 摘要:A retrieval method for explicit recognition free Farsi/Arabic document is proposed in this paper. The system can be used in mixed Farsi/Arabic and English text. The method consists of Preprocessing, word and sub_word extraction, detection and cancelation of sub_letter connectors, annotation sub_letters by shape coding, classifier of sub_letters by use of decision tree and using of RBF neural network for sub_letter recognition. The Proposed system retrieves document images by a new sub_letter shape coding scheme in Farsi/Arabic documents. In this method document content captures through sub_letter coding of words. The decision tree-based classifier partitions the sub_letters space into a number of sub regions by splitting the sub_letter space, using one topological shape features at a time. Topological shape Features include height, width, holes, openings, valleys, jags, sub_letter ascenders/descanters. Experimental results show advantages of this method in Farsi/Arabic Document Image Retrieval.
  • 关键词:shape code; sub;word; sub;letter; RBF neural network.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有