首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Adaboost Ensemble with Genetic Algorithm Post Optimization for Intrusion Detection
  • 作者:Hany M. Harb ; Abeer S. Desuky
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2011
  • 卷号:8
  • 期号:5
  • 出版社:IJCSI Press
  • 摘要:Abstract This paper presents a fast learning algorithm using Adaboost ensemble with simple genetic algorithms (GAs) for intrusion detection systems. Unlike traditional approaches using Adaboost algorithms, it proposed a Genetic Algorithm post optimization procedure for the found classifiers and their coefficients removing the redundancy classifiers which cause higher error rates and leading to shorter final classifiers and a speedup of classification. This approach has been implemented and tested on the NSL-KDD dataset and its experimental results show that the method reduces the complexity of computation, while maintaining the high detection accuracy. Moreover, the method improves the processing time, so it is especially appealing for the real-time processing of the intrusion detection system.
  • 关键词:Intrusion Detection; AdaBoost; Genetic Algorithm; Feature Selection; Classification; NSL;KDD dataset.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有