期刊名称:International Journal of Advances in Soft Computing and Its Applications
印刷版ISSN:2074-8523
出版年度:2017
卷号:9
期号:1
页码:1
出版社:International Center for Scientific Research and Studies
摘要:Speech recognition is the classical problem in pattern recognition research field. However, just a few graph based machine learning methods have been applied to this classical problem. In this paper, we propose the un-normalized graph p-Laplacian semi-supervised learning methods and these methods will be applied to the speech network constructed from the MFCC speech dataset to predict the labels of all speech samples in the speech network. These methods are based on the assumption that the labels of two adjacent speech samples in the network are likely to be the same. The experiments show that that the un-normalized graph p-Laplacian semi-supervised learning methods are at least as good as the current state of the art method (the un-normalized graph Laplacian based semi-supervised learning method) but often lead to better classification sensitivity performance measures.