首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Review and Classification of Widely used Offline Brain Datasets
  • 本地全文:下载
  • 作者:Muhammad Wasim ; Muhammad Sajjad ; Farheen Ramzan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:2
  • DOI:10.14569/IJACSA.2018.090254
  • 出版社:Science and Information Society (SAI)
  • 摘要:Brain Computer Interfaces (BCI) are a natural extension to Human Computer Interaction (HCI) technologies. BCI is especially useful for people suffering from diseases, such as Amyotrophic Lateral Sclerosis (ALS) which cause motor disabilities in patients. To evaluate the effectiveness of BCI in different paradigms, the need of benchmark BCI datasets is increasing rapidly. Although, such datasets do exist, a comparative study of such datasets is not available to the best of our knowledge. In this paper, we provided a comprehensive overview of various BCI datasets. We briefly describe the characteristics of these datasets and devise a classification scheme for them. The comparative study provides feature extractors and classifiers used for each dataset. Moreover, potential use-cases for each dataset are also provided.
  • 关键词:BCI; dataset; brain-computer interface; amyotrophic lateral sclerosis; classification
国家哲学社会科学文献中心版权所有