期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:6
页码:1186-1191
DOI:10.1073/pnas.1714715115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Atmospheric chemistry is fueled by a large annual influx of nonmethane volatile organic compounds (NMVOC). These compounds influence ozone formation, lead to secondary organic aerosol production, and play a significant role for the oxidizing capacity of the atmosphere. The anthropogenic NMVOC budget is considerably uncertain due to the diversity of urban emission sources. Here, we present comprehensive observations of urban NMVOC eddy covariance fluxes using a newly designed proton-transfer-reaction quadrupole interface time-of-flight mass spectrometer. We found emission fluxes of a surprisingly large pool of oxygenated NMVOCs (OVOCs) with an appreciable fraction of higher oxidized OVOCs that cannot be explained by known fast photochemical turnaround or current primary emission estimates. Measured OVOC/NMVOC bulk flux ratios are two to four times higher than inferred from aggregated anthropogenic emission inventories. Extrapolating these results would double the global anthropogenic NMVOC flux. In view of globally accelerating urbanization, our study highlights the need to reevaluate the influence of anthropogenic NMVOC on atmospheric chemistry, human health, and the climate system.
关键词:NMVOC ; eddy covariance ; urban emissions ; air pollution ; mass spectrometry