One of the most promising and vibrant research areas in nanotechnology has been the field of metasurfaces. These are two dimensional representations of metaatoms, or artificial interfaces designed to possess specialized electromagnetic properties which do not occur in nature, for specific applications. In this article, we present a brief review of metasurfaces from a materials perspective, and examine how the choice of different materials impact functionalities ranging from operating bandwidth to efficiencies. We place particular emphasis on emerging and non-traditional materials for metasurfaces such as high index dielectrics, topological insulators and digital metamaterials, and the potentially transformative role they could play in shaping further advances in the field.