首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Advances in photonic reservoir computing
  • 本地全文:下载
  • 作者:Guy Van der Sande ; Daniel Brunner ; Miguel C. Soriano
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2017
  • 卷号:6
  • 期号:3
  • 页码:561-576
  • DOI:10.1515/nanoph-2016-0132
  • 出版社:Walter de Gruyter GmbH
  • 摘要:

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  • 关键词:analogue computing ; artificial neural networks ; nonlinear optics ; optical computing PACS: 42.79.Ta ; 42.79.Hp ; 42.65.-k ; 42.82.-m ; 85.60.-q ; 42.55.Px ; 05.45.-a ; 07.05.Mh
国家哲学社会科学文献中心版权所有